Lecture Notes

for

Advanced Analytical Mechanics
553a, b

University of Southern California

Richard R. Auelmann

February 1970
About These Notes

I was a new engineer at Missile Division of North American Aviation when Sputnik was launched in October 1957. My supervisor asked me to give a series of lunchtime lectures on orbital mechanics, since I was familiar with Goldstein’s *Classical Mechanics*.

The University of Southern California had a two-semester graduate course “Advanced Analytical Mechanics” within the Department of Aeronautical Engineering. It so happened that the lecturer scheduled to give the course in September 1959 left unexpectedly. I was asked to step in and ended up giving the course for three hours every Tuesday night for the next 13 years. I started with Goldstein’s *Classical Mechanics* but transitioned into my own notes as time went on. By 1972, I was travelling so much that it was no longer possible to give the course. I never got around to cleaning up the notes for publication.

In the process of giving these lectures I learned far more about dynamics and applied mathematics than I ever learned in school. In that sense it was a labor of love.

Dick Auelmann
Contents

1. Dynamics of a System of Particles
 1.1 Physical Concepts
 1.2 Lagrangian Formulation
 1.3 Holonomic Constraints
 1.4 Applied Forces
 1.5 Energy and Momentum Integrals
 1.6 Routhian Formulation
 1.7 Liouville Integrals
 1.8 Linear Systems

2. Problems in Particle Mechanics
 2.1 Kepler Problem
 2.2 Problem of Two Fixed Centers of Gravitation
 2.3 Restricted Problem of Three Bodies
 2.4 Introduction to Hill’s Lunar Theory
 2.5 Charged Particle in the Field of a Magnetic Dipole
 2.6 Motion of a Projectile Through the Atmosphere
 2.7 Variable Mass System

3. Dynamics of Rigid Bodies
 3.1 Introduction
 3.2 Kinematics
 3.3 Inertia Matrix and Principal Axis Transformation
 3.4 Euler’s Equations
 3.5 Lagrange’s Equations

4. Problems in Rigid Body Mechanics
 4.1 Introduction
 4.2 Euler Top
 4.3 Lagrange Top
 4.4 Motion of a Shell in a Uniform Atmosphere
 4.5 Motion in a Variable Density Atmosphere
 4.6 Libration of a Symmetrical Satellite in a Circular Orbit
 4.7 Torques Independent of Body Orientation
 4.8 Tippe Top
5. Rigid Bodies With Moving Parts

5.1 Quasi Coordinates
5.2 Some Examples
5.3 Satellite Nutation Damper
5.4 Free Motion of a Gyro in a Cardon Suspension
5.5 Pendulum Gyrocompass
5.6 Directional Control of an Automobile

6. Hamilton’s Equations and Hamilton-Jacobi Theory

6.1 Overview
6.2 Hamilton’s Equations
6.3 Hamilton’s Principle
6.4 Canonical Transformations
6.5 Noncanonical Transformations
6.6 Hamilton-Jacobi Theory
6.7 Separable Systems
6.8 Problem of Two Fixed Centers of Gravitation, Again
6.9 Derivation of Lambert’s Theorem
6.10 Method of Variation of Parameters

7. Satellite Motion About an Oblate Spheroid

7.1 Introduction
7.2 Canonical Constants for the kepler Problem
7.3 Secular Variations of the Kepler Constants
7.4 Method of Sterne and Garfinkel
7.5 Vinti’s Method
Bibliography

